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A Picard iteration scheme has been implcmentcd for the computation of toroidal, fully 
three-dimensional, zero /3 equilibria with islands and stochastic regions. Representation of the 
variables in appropriate coordinate systems has been found to be a key to making the scheme 
work well. In particular, different coordinate systems are used for solving magnetic differential 
equations and Ampere’s law. The current profile is adjusted when islands and stochastic 
regions appear. An underrelaxation of the current profile modifications is generally needed for 
stable iteration of the algorithm. Some examples of equilibrium calculations are presented. 
c 1990 Academic Press, Inc 

I. INTRODUCTION 

tic island formation is a fundamental concern in toroidal magnetic con- 
fin devices for high temperature plasmas. In otherwise axisymmetric devi 
such as tokamaks, tearing modes and field errors lead to island formation. 
presence of large islands can result in a deterioration of the confinement prop 
of the magnetic field. Overlap of islands due to tearing modes is believed to 
major cause of disruptions in tokamaks. In three-dimensional devices su 
stellarators, even equilibrium effects can produce large islands and destroy flux 
surfaces. 

The primary approach to computing magnetic islands has been to use resistive 
time-dependent codes which follow the details of the plasma evoluti 
inertial time scale. An alternative approach is to solve directly for equil 
islands. In this paper we describe a fully toroidal calculation of fully th 
sional, zero j equilibria with islands. Our code does not assume the e 
good flux surfaces. Finite beta island calculations require modi~cati~~s in our code 
beyond those needed to handle zero p islands, and such calculations will not be 
discussed here. 

o place our work in context, we briefly review other efforts to develop equi- 
librium codes that can handle magnetic islands. 

Sykes and Wesson [l] have constructed a code which calculates helical equi- 
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libria with islands at zero /3 (zero plasma pressure) using a large aspect ratio 
ordering. They have applied their code to solve directly for nonlinearly saturated 
m = 2 tearing modes and kink modes in a cylinder. Their code assumes helical 
symmetry, so that islands can arise only at the rational surfaces having the assumed 
helical pitch, and flux surfaces exist everywhere. 

Betancourt et al. [Z, 31 have recently reported a helical equilibrium code which 
can handle islands at finite /I. The helical flux function is prescribed, so that the 
island width is imposed, rather than adjusting self-consistently to an equilibrium 
without surface currents. 

Bateman and Morris [4] have developed a code which calculates toroidal, 
zero p, nearly axisymmetric equilibria with narrow islands. The narrow island 
approximation implies that flux surfaces exist everywhere (that is, there are no 
stochastic regions). They have also applied their code to studies of saturated tearing 
modes. 

Harafuji et al. [S] have developed a new three-dimensional MHD equilibrium 
code which does not assume nested flux surfaces. Their code differs from traditional 
equilibrium codes in that the pressure and current profiles evolve as the code 
converges. This approach does not allow the pressure and current profiles to be 
specified and, therefore, precludes many of the applications that are of interest for 
a three-dimensional equilibrium code that handles islands. For example, it is of 
interest to compare saturated island widths as the profiles are varied in a systematic 
fashion, or to vary a parameter such as the aspect ratio with the profiles held fixed. 
Alternatively, to follow evolution on a long time scale, one would like to control 
the current and pressure profiles in a manner dictated by a transport code. 

A similar observation may be made concerning time-dependent resistive MHD 
codes. Even if a fully toroidal time-dependent code were to be developed which 
is numerically stable for time steps large compared to the AlfvCn time scale, the 
evolution of the current and pressure profiles due to the numerical viscosity and 
resistivity in such a code would still be an issue. 

A previous paper [6] has given an overview of our PIES three-dimensional equi- 
librium code. No self-consistent island calculations were discussed. Subsequent 
papers have given detailed discussions of our method for solving magnetic differen- 
tial equations [7], and of the convergence properties of the code for equilibria 
having nested flux surfaces [S]. The code has been applied to the calculation of 
rippled tokamak equilibria with nested flux surfaces [9]. 

The self-consistent treatment of islands has required development of some new 
numerical machinery and has also required some modifications of the basic algo- 
rithm [lo]. In this paper we describe the modified PIES code, discuss why the 
modifications were needed, and show how the code works for some particular 
examples. Finite /I islands require more extensive modifications than those needed 
to handle zero p. Finite /I islands are the subject of ongoing research and will not 
be discussed in this paper, aside from some discussion of what further modifications 
are necessary to handle them. 

To make this paper self-contained, we give an overview of the algorithm of the 
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PIES code in Section II. In that context we introduce the modifications to the algo- 
rithm that have been found necessary to handle islands. This serves as an introduc- 
tion to the following two sections, where the required modi~cations are describe 
in detail and where particular numerical solutions are 

Section III describes the modified code. Different systems are now 
used to solve the magnetic differential equations and e’s law. The current 
profile is adjusted when islands and stochastic regions An ~~derre~axat~o~~ 
of the current profile modifications has been found necessary. 

In Section IV we present some examples of equilibrium ca ations. An analyti- 
cally soluble cylindrical equilibrium with a large island is u to benchmark the 
code. The convergence of the code is illustrated for fully torsidal equilibria with 
islands, including a fully three-dimensional, fully toroidal, nonlinearly saturated 
tearing mode. 

II. OVERVIEW OF THE A~~~~IT~M 

Our iterative algorithm for computing three-dimensional equilibria begins with 
an initial guess for the magnetic field. Typically we use an analytic solution of the 
equilibrium equations in cylindrical geometry for this purpose. Field lines are 
followed, and the Cartesian coordinates of the points along the field lines are use 
to compute magnetic coordinates [7]. The pressure driven currents are calculated 
using magnetic coordinates. The magnetic field is updated by solving Ampere’s law 
cfi 813 

VxB=j, (11 

in the presence of those currents. We cycle through this loop until the magnetic field 
converges. 

Our algorithm can be summarized by the equation 

VxB n+l =jpy. (2) 

The magnetic field at the (n + 1)th step is calculated by solving Am 
a current which is a complicated nonlinear function of the magnetic field at the p?th 
step. In this form, it becomes clear that our method is closely related to t 
known Picard iteration scheme for solving the Grad-Shafranov equation 
dimensions. This iterative scheme for solving the three-dimensional 
librium equations was proposed by Grad [I l] and by Spitzer [12] in the 1950s. 

To completely determine our algorithm, we need to say how we are going to 
specify the current profile in the islands and the stochastic regions. For the zero p 
case we consider in this paper, it follows from the equilibrium equation, 

jxB=O, 13) 
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that j must be everywhere parallel to B, 

j=LB. (4) 

It follows from the divergence-free nature of j and B that ,? must be constant along 
the field lines, 

B.VJ.=O. (5) 

On the good flux surfaces, ,? is a function of the flux surface. In the stochastic 
regions, /z must be a constant. The current profile must therefore be adjusted as we 
iterate the code. When a stochastic region appears, we flatten 1 in that region. The 
II profile on the good flux surfaces is adjusted so that ,l remains a continuous func- 
tion of position. That is, the value of Iz on the flux surfaces forming the boundary 
of a stochastic region must be the same as that in the stochastic region. 

In the islands, ;1 can in general be an arbitrary function of the flux surfaces. For 
a saturated tearing mode, y2 must be flat across the island, where q is the resistivity 
[13]. If q is flat there, then so is 2. For the work reported here, we have taken ;1 
to be constant in the islands. This is a physically reasonable current profile in the 
islands, which was also assumed by Sykes and Wesson [ 11. (We emphasize that, 
although we can use the code to solve for saturated tearing modes, the convergence 
algorithm for the code is not intended to bear any relation to the time evolution 
of the tearing mode.) 

The code uses an analytical specification of ;1 as a function of the good flux 
surfaces. As the code iterates, it adjusts the current profile to make 1 flat in the 
islands and the stochastic regions. 

To adjust the ,J profile, we need to distinguish between the good flux surfaces 
enclosing the magnetic axis, and the islands and stochastic regions. We have a 
diagnostic that does that for us [6]. (For the work described in this paper, we do 
not need to distinguish between the islands and the stochastic regions, since we flat- 
ten i in both regions.) The diagnostic makes use of our algorithm for constructing 
magnetic coordinates. That algorithm works only on the good flux surfaces enclos- 
ing the magnetic axis. Given the information obtained in following a field line, the 
algorithm gives us an expression for the corresponding flux surface. We apply the 
algorithm to each field line that we follow. We then calculate the mean square 
deviation of the field line from the reconstructed flux surface. On the flux surfaces 
enclosing the magnetic axis, we find that the deviation is quite small, typically of 
order 10e5. (The magnitude of this quantity is controlled in the code by the 
number of Fourier modes retained and by the parameter [7] ftprec that specifies 
the accuracy of the Fourier decomposition along field lines.) In the islands and 
stochastic regions we find that the deviation is of order 1. As described in Ref. [6], 
we have tested this diagnostic on fields having large islands and ergodic regions, and 
have found that it sensitively distinguishes the flux surfaces enclosing the magnetic 
axis from the islands and stochastic regions. 

Our initial island computations using the PIES code encountered numerical 
difficulties. The source of these problems was determined to be the nature of the 
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magnetic coordinate system in the neighborhood of a separatrix. For three- en- 
sional equilibria with nested flux surfaces [X, 91, the code used a magnetic coor- 
dinate system. When islands appeared, it used a “quasimagnetic” coordinate sys 
with the coordinates in the islands calculated by interpolating between the 
surfaces outside the island. These coordinates have rapidly increasing Fourier 
components near a separatrix, which lead to problems in the numerics. To solve 
this problem, the code was modified to transform to a different coordinate system 
before entering the Ampere’s law solver. The problem and its solution will be 
described in more detail in Section III. 

An additional problem was introduced by the current profile adjustments in the 
presence of islands and stochastic regions. This sometimes led to difficulties with 
convergence, with the island width oscillating from one iteration to the next. The 
problem was cured by introducing an underrelaxation in the modification of the 
current profile. Section III also describes this problem and its solution in more 
detail. 

III. THE MODIFIED CODE 

In this section we describe the modifications introduced in the code to 
islands and stochastic regions. A coordinate transformation has been im~lem~~te 
before the Ampere’s law solver. The code now adjusts the current profile whe 
islands and stochastic regions appear. An underrelaxation of the current profile 

ifications has been introduced. We first describe the inate modifications. 
the initial formulation of the algorithm for the ES code [6] it was 

recognized that it would be advantageous to use differe 
solving the magnetic differential equations and Ampere’s law. 
are desirable for solving the magnetic differential equations. 
the magnetic field lines are straight, and Fourier decomposition reduces the 
magnetic differential equations to algebraic equations. Coordinates of this sort are 
not optimal for the Ampere’s law solver, because they provide an inefficient 
representation of the magnetic field and the current. The initial im~~erne~tat~5~ of 
the PIES code nonetheless worked entirely in magnetic coordinates when the flux 

i-faces were unbroken. When stochastic regions and islands appeared, the COOK- 
ates were calculated in those regions by interpolating between flux surfaces. The 

resulting coordinates behave poorly in the neighborhood of a separatrix. The reso- 
nant ripple of the flux surfaces increases rapidly as a separatrix is ap 
lines of constant magnetic angle converge at the x-point. It is not too s~r~~~s~~~ 
that numerical calculations in such a coordinate system encounter problems. To 
cure those problems, we have implemented a tra~s~ormati~~ to a we~~~be~aved 
coordinate system before the Ampere’s law solver. 

The coordinate systems (p, 0, 4) used in the code are specified by giving the 
Cartesian coordinates as a function of p, 8, and 4, 

x = X(P, 0, d?. 
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All quantities in the code are represented by discretizing in the p direction and 
Fourier decomposing in 19 and $. In particular, x(p, 0, 4) is specified by a set of 
Fourier coefficients x,,(pj) on a set of flux surfaces labeled by pi=j/L, where 
-N 6 n < N, 0 < m < M, and 0 <j d L. For all coordinate systems used in the code, 
C$ coincides with the geometric toroidal angle. We assume “stellarator symmetry” 
(symmetry with respect to double reflection in 0 and 4). This allows us to reduce 
the number of Fourier modes by a factor of two, and also simplifies things some- 
what by guaranteeing that the magnetic axis lies in the midplane at 4 = 0. 

Each iteration of the algorithm begins by following a set of field lines for the 
current magnetic field. The code follows L + 1 field lines, with initial points lying on 
the intersection of the 4 = 0 plane with the midplane, equally spaced between the 
magnetic axis and the boundary. For magnetic fields with nested flux surfaces, the 
L + 1 field lines determine L + 1 coordinate surfaces. These surfaces are labeled by 
the coordinate p, with equal increments in p between the surfaces, p = 0 at the 
magnetic axis, and p = 1 at the boundary. That defines the coordinate p. Given the 
Cartesian coordinates of the points along the field lines, the code applies an algo- 
rithm [7] that calculates Fourier coefficients x,,(p) corresponding to a magnetic 
coordinate system (p, 0, d), with 4 constrained to be the geometric toroidal angle. 
For those field lines that are determined to lie in an island or a stochastic region, 
the value of x,,(p,) is recalculated by interpolating between the values on the 
good flux surfaces enclosing the magnetic axis. This defines what we call a 
“quasimagnetic” coordinate system. 

For finite p equilibria, magnetic differential equations must be solved on the 
good flux surfaces to determine the Plirsch-Schliiter current. Magnetic coordinates 
are particularly convenient for this purpose. For the zero p case considered in this 
paper, we need only impose the homogeneous magnetic differential equation 
Eq. (5). On the good flux surfaces this is equivalent to imposing the constraint that 
;1 be a function only of p. In the islands and stochastic regions we satisfy this equa- 
tion by taking VI1 = 0. Once 1 is determined, the current is given by Eq. (4). 

Our Ampere’s law solver takes as its input the x,,(pj) and the contravariant 
components of j in the (p, 0, 4) coordinate system. It solves Eq. (1) in the given 
(p, 0, 4) coordinate system, and returns the contravariant components of the 
magnetic field in those coordinates. It makes no assumptions about the nature of 
the (p, 8,#) coordinate system. In particular, it does not use the fact that (p, 0, 4) 
is a magnetic or quasimagnetic coordinate system. 

For one test of the ability of the code to properly handle islands, we use an 
analytic solution of the equilibrium equations in cylindrical geometry [14]. The 
magnetic field is given by 

B, = &J,(h) + b,Z&) cos(2B -I- kz), 

B, = -b,(A* -Ic~)~~/* [kZi(y) + 2AZz(y)/y] sin(2Q+kz), (6) 

B, = b,J,(;lr) - b,(/Z’- ~?-l’~[Al;(y) + 2kZ,(y)/y] cos(28 + kz), 
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y  = (A2 - k2p2 r, 

k= l/R, R is the major radius (a constant to be specified), 1 is also a constant 
which we are free to specify, J,  is the Bessel function of order 2, I, is the modified 
Bessel function, and the prime denotes differentiation with respect to the ~r~~rn~~t 
of the Bessel function. We choose A so that when 6, = 0 there is a q = 2 surface in 

e middle of the plasma. The magnitude of the resonant m = 2 perturbation, an 
erefore the width of the island at the q = 2 surface, is controlled by the value o 

e I shows a Poincari: plot produced by this field for the parameters 
= I., and b&,=0.15. 
t of the code, we simply start the code with Eq. (a), and we let the code 

iterate. For the original version of the code, in quasimagnetic coordinates, we 
verified that the residual lj x BI was initially small, but found that the field mov 
away from this solution and blew up within a few iterations. The source of t 
problem was determined to lie in the p dependence of the resonant Fourier corn- 

FIG. I. Poincart: plot for the field given by Eq. (6) with L=0.967, R= l., and b,/h,=0.15 
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ponents of x. These Fourier components increase rapidly in the neighborhood of 
the island (although they are not singular). The rapid variation leads to large 
numerical inaccuracies and to numerical instability. 

To cure this problem, we have modified the code to transform to a new coor- 
dinate system (r, 6,d) before entering the Ampere’s law solver. We will call (Y, 8, 4) 
the “background” coordinate system, as distinguished from the magnetic or 
quasimagnetic (p, 0, 4) coordinate system used to solve magnetic differential equa- 
tions. The background coordinates are chosen to be smooth, and they are chosen 
such that the radial Y = 1 coordinate coincides with the outer flux surface and Y = 0 
corresponds to the magnetic axis. The 4 coordinate is taken to be the same as the 
geometric toroidal angle (as in the quasimagnetic coordinate system). It is typically 
the case that the magnetic axis shifts from one iteration to the next, so the condi- 
tion that r = 0 coincides with the magnetic axis implies that the background coor- 
dinates typically change from one iteration to the next, although the changes 
become small as the code converges. We will describe in more detail how the back- 
ground coordinate system is chosen later in this section. 

The background coordinate system is specified by giving X(Y, 8, 4) in terms of its 
Fourier coefficients on a set of surfaces rj=j/L, 0 6 j< L. Ampere’s law is solved in 
the background coordinate system, giving the updated magnetic field in these coor- 
dinates. The field lines are followed in the background coordinate system. Since we 
know X(T, 8, d), we can determine the Cartesian coordinates of the points along 
the field lines. Putting this information into our algorithm for determining 
quasimagnetic coordinates [7], we obtain an updated x(p, 0, 4) for the new 
magnetic coordinates. 

We need to specify the contravariant components of j in the background coor- 
dinate system for the Ampere’s law solver. For the zero p case, we specify the 
current profile by giving an analytic expression for 2(p). We analytically prescribe 
how the 1 profile is to be modified in the presence of islands and stochastic regions. 
The details of this will be discussed later in this section. To determine j in the 
background coordinates, we express both 2 and B in these coordinates, and use 
W. (4). 

It should now be clear why the zero b case is somewhat easier to handle than the 
finite b one. To implement the coordinate transformation at finite p we need to map 
the vector quantity j onto the new coordinate system. At zero p, we only need to 
map the scalar quantity, 1. 

Given 2.(p), x(p, 0, d), and x(r, 8, b), we determine A(Y, 8, 4) by inverting 
x(p, 0, 4). For each point in a uniformly spaced (r, 8,d) mesh, we determine x 
from x(r, 8, d), invert x(p, 0, d) to determine the corresponding value of p, and 
evaluate i(p). The inversion need only be performed in two-dimensions, since the 
4 coordinate is known. To perform the inversion, we use a two-dimensional secant 
algorithm, ZSCNT, from the IMSL package. We have found it advantageous to 
tinker with the algorithm to take advantage of the known range of the solution 
(0 < p d 1) and to allow for immediate convergence if the initial guess is sufficiently 
accurate. We interpolate x(p, 0, 4) in p using cubic splines [7]. 
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To provide a more rigorous test of the code, we construct a magnetic field which 
is equal to that given by Eq. (6) at the plasma boundary, but which differs in the 
interior. Using this for the initial field and imposing the same current profile as 
before, we verify that the code converges to the analytical equilibrium solution, 
Eq. (6). The results are described in Section IV. 

For the analytical solution discussed thus far, we did not need to flatten /1 in the 
islands because the 2 profile is already flat. In general, we do need to flatten 1. To 
specify 1(p) in the presence of islands and stochastic regions, it is convenient to 
define a new radial coordinate p(p) by subtracting from p the total enclosed width 
of the islands and stochastic regions. In other words, dp/dp = 1 on the good flux 
surfaces enclosing the magnetic axis, and dp/dp = 0 in the islands and stochastic 
regions. The coordinate p is constant in the islands and stochastic regions. If we 
specify d(p), the L profile has the desired properties. We are free to adjust the 
n(p) profile in any way we like as the island widths change. In practice, we use 
an analytic expression for L(p) with two free parameters which are adjusted to 
maintain the total plasma current and the current density on the magnetic axis at 
fixed values. 

As an example, one current profile that we have used is the peaked profile of 
Furth, Rutherford, and Selberg [15], 

/z(P)=&(l +p*/p$*. (9) 

This profile has been used extensively in linear and nonlinear tearing mode studies 
[13, 15, 161. Equation (9) contains two free parameters, /2, and pO, The value of & 
determines the current density at the magnetic axis, which is kept fixed. The value 
of p0 is adjusted to keep the total current in the plasma constant. For any given pot 
the current is calculated by integrating up dI/d$ = 2 using a trapezoidal rule. A 
NAG one-dimensional root finder, c05axf, is used to adjust p0 to the required value. 

Having determined /z(p), we express ;1 as a function of the background coor- 
dinates (r, 19, d), as described above. We calculate the current density using Eq. (4), 
and we solve Ampere’s law in the background coordinate system. 

In the next section we will describe some equilibrium calculations using the 
current profile of Eq. (9). To initialize the code, we superpose a resonant perturba- 
tion on an axisymmetric magnetic field. When we first used the algorithm we have 
described with these equilibria, we found that the magnetic field in the code 
oscillated wildly from one iteration to the next and did not converge. We have 
found that an underrelaxation (or blending) of the current profile modifications 
cures this problem. The code was built with the capability for blending the changes 
in the field [S]. This underrelaxation of the solution was not itself sufficient to 
resolve the difficulties encountered with these equilibria. 

We blend the current in the background coordinate system. For each value of r 
on our radial grid and each Fourier component /Z,,JY), we let 

(10) 
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where 3 is specified as an input parameter to the code. In practice, we find t 
ct=O.5 works well. 

IV. EXAMPLES AND Drs~UssIo~ 

In this section we present some examples of eq~i~ibrinm calculations using the 
modilied code. The analytic equilibrium solution with a large island is used to 
benchmark the code. Fully toroidal equilibria with islands are also corn~~t~~~ 
including a fully three-dimensional, fully toroidal, ~o~l~~ear~y saturate tearing 
mode. 

first consider the analytic equilibrium solution en this solution 
is into the code, we verify that the residual jj x 
code is small. Because of discretization errors, the n 
for Eq. (6) is nonzero. Figure 2 shows the log of the residual ve 
L + 1 is the number of radial grid surfaces) for L = 10, 20, and 
drawn in the figure is a least squares lit. If the error is domi 
discretization, we would expect the residual to scale as L -‘, since our radial finite 
differencing is second-order accurate. The least squares fit shown in the fig 
corresponds to a residual of 0.035L P1.95. Letting the code iterate, we find that 
residual decreases as the code converges to a solution of the discretized equilibriu 
equation. 

To provide a more rigorous test of the code, we construct a magnetic field which 
is equal to that given by Eq. (4) at the plasma boundary, but whit 
interior. Using this for the initial field and imposing the same current profile as 
before, we verify that the code converges to the analytical equilibrium solution, 

. (4). The desired magnetic field is constructed by taking b, -+ b,($i,/$l,e)p in 
Eq. (4): where 

FIG. 2. The log (base 10) of the residual versus log(L). L= 10, 20, and 30, for the analytic 
equilibrium solution. L+ 1 is the number of radial grid surfaces. The straight line is a least squares fit. 

183/87:2-X 
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-1. 
I  I  I  I  I  I  I  I  J 

-1. 1. 
FIG. 3. Poincarir plot for a magnetic field used to initialize the code which agrees with Eq. (6) on 

the plasma boundary, but differs in the interior. 

is the helical flux function corresponding to the field of Eq. (6), Ic/he is the value of 
the helical flux at the plasma boundary, and p is a parameter that controls the 
initial island width. We choose p = -500 to obtain an island width which is initially 
much smaller than that for the converged solution. The Poincare plot for the 
corresponding field is shown in Fig. 3. 

Table I gives the residual as a function of the iteration number. For this run, we 

TABLE I 

Residual as a Function of Iteration Number when 
the Code Is Initialized with the Field Shown in Fig. 3 

Iteration Residual 

0 1.02 x 10-X 
1 1.11 x 10-d 
2 8.55 x 10-S 
3 6.66 x lo-“ 
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used L = 20, and we retained the eight largest modes in the range 0 6 m < 5, 
-2 < IZ d 2. After the first iteration, the Poincare plot is already i~disti~g~~sba~lc 
from that of the analytic solution. For this run, the code took about 50 s per 
iteration. The code has not been fully optimized. e believe that this time can be 
substantially reduced, and we intend to do so in re versions of the code. 

The analytic solution that we have considered has cylindrical geometry and a flat 
A profile. We turn now to fully three-dimensional tor 
current profiles we use the peaked profiles of Furth, 
(Eq. (9)) [ 151. These profiles have been used extensively in fir-rear and nonlinear 
tearing mode studies [13, 15, 163. 

Equation (9) has two free parameters, A, and pO. n Ref. [15], Furth et al. deter- 
mine the tearing stability of cylindrical, zero /I equihbria as a function of their 
parameters X, = P,/Y~ and xb = rb/rO, where r is the radial cyhndrical coordinate, P, 
is the location of the rational surface, and rb is the location sf the conducting wall. 
For cylindrically symmetric equilibria, our p coordinate is the same as 1. In our 

tion the conducting wall is at p = I, so that xb = t/p,, To run any case 
in Ref. [IS], corresponding to given values of X, and xhr we take 

p. = l/x, and adjust A0 to give pS = xSpO. 
initialize the code, we superpose a resonant perturbation on an ax~syrnrn~~~~c 
(Recall that the initial field is used only to specify the shape of the boundary, 

and to serve as an initial guess to the equilibrium field.) The axisymmetric piece of 
the field is 

B’=O, 

BB= (t,+ t,r2) RJR, (11) 

B” = R;/R2, 

8 are polar coordinates, R, is the major radius, and R = R, + r cm(%), 
and t, are chosen to give values of t (the rotational transform) at Y = 0 

and r = 1 coinciding with the t in the peaked current analytical cqui~~bri~m. The 
helical perturbation is constructed in terms of an approximate helical flux function, 

B,=VljYx~, (121 

This is only approximately divergence-free because of the toroidal geometry, but 
that turns not to matter, and V. B = 0 is enforced by the code on subscq~c~t 
iterations. choose I,!I somewhat differently for the two cases we consider. 

We first consider a current profile having a q = 3 surface in t e interior (where 
4 is the “safety factor,” CJ = l/t). For this case, we take 

$I = Er3 cos(30 - 4) (13) 

in Eq. (12). We choose pJpO = 0.6, so that the profile is tearin stable in cy~~~dr~ca~ 
geometry. We run, however, in toroidal geometry, with an aspect ratio of 4. 
adjust the parameter p0 so that there is no q = 2 or q = 4 surface in the plasma, 
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Figure 4 shows the convergence as a function of blending parameter for rS = 0.8, 
y0 = 1.33, and E = 5 x 10e4. For these runs, the blending is applied to both the field 
and the current profile, with the blending parameter the same for both. The figure 
is a plot of the residual as a function of the iteration number for three different 
values of the blending parameter, CI = 0.1, CI = 0.5, and c( =0.7 (where CI has been 
defined in Eq. (10)). 

Each of the calculations for Fig. 4 were done with L = 40, retaining the 15 largest 
modes in the range 0 <m d 9, - 1 <n d 1. The Fourier transforms were calculated 
to within a tolerance of 6 x lo-’ as specified by the input parameter to the code 
ftprec. As in all the calculations described in this paper, we have retained all modes 
greater than ftprec. For each value of the toroidal mode number n, the amplitude 
of the highest poloidal mode number retained is of order ftprec. This amplitude 
grows larger when the width of the Fourier spectrum increases, prompting us to 
add more modes. (The same is true of the lowest poloidal mode number when the 
m = 0 mode is not retained.) The coupling in toroidal mode number comes only 
through nonlinear beating of the modes, so that the amplitudes of the higher y2 
modes are predictably small. We have rerun a few cases with additional modes, and 
have verified that the change in the mode amplitudes is small. We have also verified 
the expected amplitudes of the higher n modes. 

In calculating the residual, we have used a form of the equilibrium equations 
different from that used by the convergence algorithm of the code. This provides us 
with some independent information on our discretization and truncation errors. As 
in our calculations of equilibria with nested flux surfaces [S], the residual is 
observed to decrease to a minimum value, and then stop decreasing. When the code 
has converged, the value of the residual reflects the truncation and discretization 
errors in the code. The minimum residual was found to scale as l/L2 in Ref. [S], 
as would be expected if the radial discretization errors dominate. 

In the calculations for Fig. 4, the Poincare plot appears to be converged by the 

0 10 20 30 
iteration number 

FIG. 4. Plot of the residual as a function of the iteration number for the peaked profile with an m = 3 
perturbation, rS = 0.8, and r0 = 1.33. Three different values of the blending parameter, c[, have been used. 
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third iteration in each case. At that point the island width has settled down to 
about 13% of the minor radius, with little change observable after t 
converged island width for the three cases is the same. These runs took about 
1.5 min of Gray time per iteration. 

We can modify our initial helical perturbation in such a way that it leaves the 
plasma boundary unperturbed. (The boundary is then circular.) To 

take 
I) = s(r3 - r5) cos(3B - 4). (141 

If we put the modified initial field into the code and iterate, we find. that the code 
rapidly converges to an axisymmetric field. This is what we would ex 
tearing stable equilibrium (although the analysis of Furth et al. [ 15 1, 
does not guarantee that our toroidal equilibrium is stable). For tearing unstable 
equilibria, however, there are three-dimensional equilibrium solutions with circular 
boundary corresponding to the nonlinearly saturated instability. 

e next consider a current profile having a 4 = 2 surface in the interior. e take 

FIG. 5. Poincare plot of the initial field for the tearing unstable case. The boundary is unperturbed. 
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so that the boundary is unperturbed. For the profile parameters, we take rs = 0.525 
and r,, = 0.8, so that the profile is unstable to an m = 2 tearing mode in a cylinder 
and the q = 2 surface is about halfway out. Again we take an aspect ratio of 4. 

Figure 5 is a Poincare plot of the initial field, corresponding to E = 1.25 x 10p3. 
Although we have imposed a pure m = 2 Fourier harmonic, it couples in toroidal 
geometry to an m = 3 perturbation, and islands are excited at both the q = 2 and 
q = 3 surfaces. We use L = 50 for this calculation, and we retain the 11 Fourier 
modes having amplitudes greater than 10e5. Letting the code iterate, we now find 
that it converges to an equilibrium solution with an island. The Poincare plot is 
shown in Fig. 6. 

For this calculation we have used cylindrical background coordinates, (r, Q). The 
origin of the background coordinate system does not coincide with the magnetic 
axis for the converged solution. This background coordinate system is convenient 
for producing our Poincart plots, since the field lines are followed in the back- 
ground coordinate system. 

We have also run a case in which only the amplitude of the initial perturbation 
is different. The amplitude is taken four times larger, .s = 5.0 x 10M3, corresponding 

FIG. 6. Poincark plot for the converged equilibrium field in the tearing unstable case. 
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to a doubling of the initial island width at the 4 = 2 surface The code converges to 
the same final equilibrium solution. 

r previous code often required some radial filtering to stabilize short 
w  ength modes. This was discussed in Ref. [Sj. For the work deseribed in this 
paper, no filtering was needed. The coordinate transformation has made the code 
more robust. We have run island calculations out to as many as 45 iterations an 
have seen no indications of numerical instability. 

We conclude that our modified PIES code is ca le of calculating fully toroidal, 
self-consistent, zero fl equilibria with islands. The analytic tes case indicates that 
island widths are accurately calculated. The code converges ra idly and robustly. 
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